video thumbnail

Cerebral Blood Flow Regulation

Duration: 14:09

Write A New Comment

0 Comments

This video is part of the blood flow regulation series. In this video we will present: Role of the blood brain barrier. Brain's predeominant use of the autoregulation for its control. Role of changing pH for the blood flow. Role of the oxygen vs. carbon dioxide for the brain's blood flow. Various nuclei that take part in controlling the blood flow and pressure in the body to optimize the flow to the brain.

 

CVS PHYSIOLOGY LECTURE # 14 STUDY NOTES:

AUTOREGULATION – CEREBRAL BLOOD FLOW

The vessels supplying the brain tissue are separated from the CSF by a blood-brain barrier. Blood flow in these vessels is autoregulated through intrinsic mechanisms(autoregulation). The brain does have sympathetic nerves innervating its blood vessels but these nerves do not play any role in regulating the blood flow. Intrinsic mechanisms that are involved in autoregulation of cerebral blood flow are theorized as follows:

1) Myogenic theory: This theory states that increase in blood flow in cerebral vasculature is counteracted by contraction of smooth muscles surrounding the blood vessels. This action helps to nullify the increase in blood flow and pressure.

2) Metabolic theory: According to the metabolic theory, the brain has the ability to autoregulate blood flow in response to changes in pH of the blood. The pH of blood circulating in the cerebral vasculature is different from that in the CSF. In other words, it is not necessary that the CSF will undergo changes in its pH if the blood being delivered to the brain has a different pH. This is explained by the fact that H+ ions, being positively charged, cannot travel across the blood-brain barrier. The pH of blood changes regularly with changes in the body. Hypoventilation causes respiratory acidosis which causes the pH to decrease. Similarly, ingesting drugs like aspirin, sulfonamides etc also cause marked changes in pH of blood. Therefore, if the H+ ions were allowed to pass uninterruptedly across the blood-brain barrier, the consequent changes in pH would have caused devastating effects on the brain tissue. On the other hand, gases such as carbon dioxide and oxygen can cross the blood-brain barrier as they don’t carry a charge. The relation of blood flow with carbon dioxide is linear, i.e. increase in carbon dioxide concentration will directly cause increase in blood flow. The effects of oxygen on the cerebral blood flow are negligible; however, pathologically increasing oxygen concentration will show a prominent decrease in blood flow.

 

Hypoventilation causes carbon dioxide levels to increase in the blood. After crossing the blood brain barrier, carbon dioxide enters the CSF where it reacts with water and carbonic acid . The carbonic acid formed disassociates into hydrogen ion and bicarbonate ion. The H+ ions act on the ventrolateral part of medulla which is the central chemoreceptor of the body. The chemoreceptor zone detects changes in the chemical content of the body. The role of central chemoreceptors is different from that of the peripheral chemoreceptors in maintaining the homeostasis in the body. When triggered, it sends impulses to the nuclei present on the lower 1/3rd of Pons and upper parts of Medulla. These areas of brain are involved in cardiovascular and respiratory changes that are carried out through sympathetic and parasympathetic nerves. As a result, the vessels in the body as well as in the brain vasodilate and the blood flow increases. Moreover, intrinsic metaboliteswhich are released by the cerebral tissues cross the blood-brain barrier and act on the vascular smooth muscles. This causes further vasodilation of the cerebral vessels. These vasodilator metabolites include the following:

• K+ ions

• H+ ions

• Bradykinin

• Nitric Oxide

The Monro-Kellie Doctrine: The principle says that the combined volume of Brain, blood and CSF in the cranial vault is maintained at a constant value in all circumstances. If a change in volume occurs in either of the constituents, the volume of the other fluid is shifted out or into the cranium in order to compensate for the change.

 

  • * Examine cerebral blood flow autoregulation and the limited impact of sympathetic innervation.
  • * Explore the metabolic and myogenic theories governing blood vessel dynamics in the brain.
  • * Analyze the brain's response to CO2 and the influence of pH changes in the CSF.
  • * Understand local metabolites' role in vasodilation and blood flow regulation.
  • * Delve into the Monro-Kellie Doctrine.

Following answers are created by ChatGPT. Occasionally the answer may be harmful, incorrect, false, misleading, incomplete, or limited in knowledge of world. Please contact your doctor for all healthcare decisions. Also, double check the answer provided by the AI below.

Faculty

In addition to the presenter, following authors may have helped with the content writing, review, or approval:

  • Dr. Mobeen Syed

CME, CE, CEU and Other Credit Types:

ACCME Accreditation Statement
The DrBeen Corp is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

AMA Credit Designation Statement
The DrBeen Corp designates this enduring material for a maximum of 0.25 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.


Disclosure Information

In accordance with the disclosure policies of DrBeen Corp and the ACCME (Accreditation Council for Continuing Medical Education), we are committed to upholding principles of balance, independence, objectivity, and scientific rigor in all of our Continuing Medical Education (CME) and Continuing Education (CE) activities. These policies include the careful management and mitigation of any relevant financial relationships with organizations that are not eligible.
All members of the Activity Planning Committee and presenters have disclosed their relevant financial relationships. The DrBeen Corp CE Committee has thoroughly reviewed these disclosures and determined that these relationships are not deemed inappropriate in the context of their respective presentations. Additionally, they are found to be consistent with the educational objectives and the integrity of the activity.

Faculty Disclosures
Dr. Mobeen Syed Author declares no conflict of interest.

Please login to access this content.

Don't have an account?

Start Your Free trial

No credit card information needed.

Cardiovascular System

Related Videos